
IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 1
 Copyright © 2008 IHE International

Integrating the Healthcare Enterprise

 5

IHE IT Infrastructure (ITI)
Technical Framework 10

15

White Paper

Metadata Versioning

 October 10, 2008

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 2
 Copyright © 2008 IHE International

Table of Contents
 20

25

30

35

40

45

50

1 Open Issues .. 3
2 Closed Issues.. 4
3 Introduction.. 6
4 Use Cases... 7

4.1 Update Patient Demographics .. 7
4.2 Update Confidentiality Code .. 7
4.3 Deprecate Document without Replace ... 7
4.4 Update Document Availability... 7
4.5 Delete Document .. 7

5 OASIS ebXML Registry 3.0 support for Metadata Versioning .. 8
6 Proposal for Use in XDS.b .. 10

6.1 A new perspective on metadata .. 11
6.2 Mechanisms for Updating Metadata... 11
6.3 Rules for use of Updating Metadata ... 11

7 Web Services Definitions .. 18
8 Examples.. 19
9 Required changes to existing XDS facilities ... 20

9.1 Changes to the Life-Cycle Management facility.. 20
9.2 Added Requirements for Folder Management ... 20
9.3 New Stored Query parameter ... 20
9.4 Changes to Document Source actor implementations .. 20
9.5 Changes to Document Consumer actor implementations... 20
9.6 Changes to Document Repository actor implementations ... 21
9.7 Changes to Document Registry actor implementations ... 21
9.8 Namespace Issues ... 21

10 Use Cases Revisited... 22
10.1 Update Patient Demographics .. 22
10.2 Update Confidentiality Code .. 22
10.3 Deprecate Document without Replace ... 22
10.4 Off-line Archival of Document Repository Contents... 22
10.5 Delete Document .. 22
10.6 Change Summary ... 23

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 3
 Copyright © 2008 IHE International

1 Open Issues
 55

60

65

70

75

80

85

MV003: Are there use cases for updating the metadata of Folder objects? Now that Folders are used in
Content Profiles the ability to update their metadata may be necessary.

MV007: (The wording is weird because I also published this note on the Implementation Guide.)
Document Source(s) can submit a document multiple times. This results in a
XDSDocumentEntry.uniqueId being present on multiple XDSDocumentEntry objects in the Registry.
As long as the size and hash attributes are the same, this is considered a normal condition that a
Document Consumer must be prepared. This condition can occur for two other reasons. First a Provide
and Register transaction can fail because the response message from the Repository back to the
Document Source is not delivered. This can happen on a synchronous connection as well as with
asynchronous web services as described in the new Async XDS Supplement. A natural response for the
Document Source is to resubmit, again causing duplication.

A document replace (RPLC from LifeCycle Management option to XDS) has the known issue that a
Document Source replacing a document is not required to find all copies of the document in the
Registry. A replacement will be applied to only one copy of the document. Likewise the new topic of
Metadata Versioning (currently a white paper) does not carry the requirement to find all copies of the
document metadata.

MV012: Should the comment attribute on SubmitObjectsRequest be allowed or disallowed?

MV015: The new actor name, XDS Admin actor, is a horrible name. I include it for now but hope to
get a better suggestion through public comment. An alternate name “Document Metadata Updater” was
suggested. I made no changes so far since the suggestion came in a bit late.

MV016: It is now acceptable to update the XDSDocumentEntry.patientId attribute. But, there is no
facility for updating the XDSSubmissionSet.patientId attribute (or other attributes).

MV017: An attempt to retrieve a deleted document should fail but there is no interaction between the
Repository and Registry to allow enforcement.

MV018: Rob's coded availability attribute needs to be used and documented.

MV020: Audit event for Update transaction needs to be documented. Both lid and id attributes must
be logged.

MV022: Should a named option be created for the Document Consumer actor? This option would
signal that the implementation is compatible with a Document Registry that implements Metadata
Versioning.

MV023: Should we control the result of a delete operation? If an implementer decides to allow real
deletes (remove documents and DocumentEntry objects) should the profile require they also delete the
SubmissionSet and Associations linked to the document?

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 4
 Copyright © 2008 IHE International

2 Closed Issues
 90

95

100

105

110

MV001: Should UpdateReason values be prefixed by a namespace? See MV013 for discussion.

MV002: Should UpdateReason, as specified in the SubmissionSet Association be a classification
instead of a slot? See MV013 for discussion.

MV004: Should a Deprecate request use a (new) Deprecates Association Type instead of HasMember?
The text has been updated to use a new Deprecate Association type.

MV005: Should a move to off-line request use a (new) Offline Association Type instead of
HasMember? A new Association type of Offline has been created.

MV006: Should a deletion use a (new) Deletes Association Type instead of HasMember? A new
Association type of Delete is used.

MV007: Could Metadata Versioning support Auto-Summary documents? No. We use the term auto-
summary to refer to documents that are generated on demand with the most up to date information. A
medical summary created at the time of retrieval is a good example. Currently several implementations
are using the existing document replacement facility. This has been viewed by some as too heavy-
weight. Such a replacement cannot be implemented without the use of a Submission Set since it is the
creationTime attribute of the Submission Set that would be used to label when the summary was
generated. If we created some new special semantic to attempt to simplify/minimize the metadata
necessary to record the generation of a new version of an auto-summary document, it would only
remove the need for the RPLC association linking the new version to the old version.

MV008: The use of a code to label the type of update has been questioned. Do we need to restrict the
use of this mechanism to approved types of updates? If the coded labeling of update types is discarded
then the UpdateReason Slot on the Association should be removed and instead we should require a free
text comment in the //ExtrinsicObject/VersionInfo/@comment field

The current version of the paper removes the UpdateReason slot entirely and instead lists specific
DocumentEntry attributes that must be maintained across versions.

MV009: In existing XDS, a document can be submitted multiple times with same uniqueID as long as
hash is identical. How should this be handled if the multiply submitted document is version 3 of a
document? Since the actual document is not being updated, the hash is not useful. Is it legal, according
to ebRIM and ebRS for there to be two ExtrinsicObjects in the Registry with the same version? If id is
same, if different? It seems that the second should be ignored if the metadata is exactly the same and
rejected if it is not. The second case probably coming from two different stations trying to do different
updates at the same time. Registry Adaptor could assign the version number. Seems that there could be
pitfalls to this approach.

115

120

125

A closer reading of the standard (ebRIM) shows that the registry assigns the version numbers so this is
an implementation issue for the Document Registry actor and not relevant to this specification.

MV010: Metadata versioning would seem to make obsolete the existing discussion on precedence of
RPLC/XFRM/APND relationships and which ones deprecate previous content. Metadata versioning
gives the opportunity to surgically deprecate documents, no need for fancy rules.

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 5
 Copyright © 2008 IHE International

This is no longer an issue.

MV011: Offline (as in removed from available storage) needs to be coded separately from
UpdateReason and status. Later if returned to available storage, need to restore its prior status. 130

135

140

145

150

This has been resolved by storing the original DocumentEntry status in a Slot on the Offline
Association and establishing rules for its restoration.

MV013: The UpdateReason attribute may be too restrictive and of very little value since the
differences between to versions of an ExtrinsicObject can be determined by comparison.

The UpdateReason attribute of the Submission Set Association has been removed. First it restricts the
use of this mechanism. To be useful from an interoperability perspective it would have to be a coded
term. In its place is a list of ExtrinsicObject attributes that may not be updated.

MV014: The functionality described in this paper should become a named option on the XDS.b profile.
A named option has been introduced.

MV014: (oops on duplicate number) The marking of a document as Offline or Online can be done by
submitting an update to the DocumentEntry. It is currently specified as being controlled by the
submission of an Offline Association. We need to determine which approach to stick with. I cannot see
a strong reason to pick either one.

MV015: There is currently no way to issue a Stored Query asking for only online documents. Add a
query parameter?

MV019: A Stored Query initiated by the Doc Con does not return DocumentEntry objects marked as
deleted. If the request comes from the XDS Admin Client actor they are returned. There is currently
no way to distinguish between these requests.

Stored Query operation does not depend on the actor initiating. DocumentEntry objects marked as
Deleted are never returned.

MV021: For now sending metadata updates through the Repository actor is acceptable. This enables
early testing and research. Should this capability be kept or abandoned long term thus requiring a
direct connection between Document Source and Document Registry? The introduction of the XDS
Admin Client and XDS Admin actors would imply the direct connection.

Update transaction always goes from XDS Admin actor directly to the Document Registry actor.155

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 6
 Copyright © 2008 IHE International

3 Introduction
We have many new Document Sharing use cases we cannot satisfy using the current XDS profile and
the subset of features it uses from the OASIS ebXML Registry standard. The original XDS was based
on ebRIM and ebRS version 2.1. XDS.b and XCA use ebRIM and ebRS 3.0. This white paper
explores a collection of use cases that can be satisfied by introducing Metadata Versioning, a
mechanism described in ebRIM 3.0 and ebRS 3.0, into XDS.b. Furthermore it makes recommendations
on how to satisfy these use cases using Metadata Versioning along with current XDS.b features.

160

165

A current mechanism in XDS, called Document Replacement, is capable of replacing a document, its
contents in the Document Repository, along with its metadata in the Registry. This new mechanism is
focused on making updates to the metadata in the Registry while maintaining the existing Repository
contents.

We start by introducing the target use cases, then describe the Metadata Versioning features available
in ebXML Registry version 3.0 and how we plan on using them, and finally we revisit each use case
and describe how each use case can be satisfied. Since this work depends on the version 3.0 registry
standard, it does not attempt to update the XDS.a profile. 170

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 7
 Copyright © 2008 IHE International

4 Use Cases
The following use cases can be satisfied by using metadata versioning and existing XDS.b features.
These use cases have been proposed in IHE committees or national projects looking to adopt XDS.

4.1 Update Patient Demographics
This provides the ability to change key patient demographics attributes on a document. This would 175
follow the lead set by Radiology that patient demographics are allowed to be more changeable than
clinical information.

4.2 Update Confidentiality Code
The confidentialityCode attribute of a document may be changed many times over the useful life of a
document to maintain the privacy aspects of the document. 180

4.3 Deprecate Document without Replace
The only current mechanism for deprecating a document, marking it as no longer useful, is to replace it
with a new version. Documents become un-useful or not appropriate for day-to-day usage. Changing a
document's status to Deprecated allows the document to be hidden from casual use but still be available
when deeper investigation is called for. This use case discusses how to deprecate a document, changing 185
its status from Approved to Deprecated, without replacing it.

4.4 Update Document Availability
Documents in a Document Repository actor can change availability. Examples are:

• Old documents are moved to 'less accessible' media
• Documents are permanently removed from service 190

195

200

A seemingly unrelated use case is important here because it also originates at the Document Repository
actor. Repository maintenance, unrelated to document availability, can require updates to metadata.
Two use cases are:

• A Repository server is split into two to manage a growing number of documents. It is
decided to create a new network presence for the new server (the split could have been
hidden using network routing tricks). This leads to the creation of a new repositoryUniqueId
for the new Repository. The metadata for the documents moved must be updated.

• An extension of this use case is to consider that this Repository also offers the XDS.a
Retrieve transaction which is dependent on the XDSDocumentEntry.URI attribute. The
metadata update would update this attribute as well.

4.5 Delete Document
The French National Project has asked for a way to delete a document and its metadata. While more
detail is needed to support this use case, the technical underpinnings are described.

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 8
 Copyright © 2008 IHE International

5 OASIS ebXML Registry 3.0 support for Metadata Versioning 205

210

215

This work is enabled by new metadata management features introduced into version 3.0 of the ebXML
Registry standard (ebRIM and ebRS). The key new concept is the ability to maintain multiple copies or
versions of a metadata object, such as an ExtrinsicObject, which represents in metadata a single real
document in a repository. In terminology of the standard, all objects stored in the registry are called
Registry Objects. A new concept is the Registry Object Instance, a specific version of a Registry
Object. Collectively, all the versions of a Registry Object are called a Logical Registry Object.

All Registry Objects are identifiable by their id attribute. All objects in the registry must have a unique
value for their id attribute. This sense of identity is maintained when metadata versioning is introduced.
To allow a collection of registry objects to be grouped together and be identified as versions of the
same object, two new attributes are introduced: the Logical ID and the VersionInfo element. While all
objects must have unique value for their id attribute to maintain their identity, all objects that are
versions of the same logical object have the same logical id or lid attribute.

The simplest form of an ExtrinsicObject, as specified in ebRIM 2.1, looks like:

<ExtrinsicObject id=”urn:uuid:123...”>

</ExtrinsicObject>

containing only an id attribute giving it its identity. Note that we use a shortened format for UUIDs to
improve readability. In ebRIM 3.0 this same object could be coded as:

220

<ExtrinsicObject id=”urn:uuid:123...” lid=”urn:uuid:123...”>

</ExtrinsicObject>

In this version of the standard, the registry object still maintains its identity by having a unique value
for the id attribute. The presence of the lid attribute having the same value as the id attribute indicates
that this is the first, the original, version of the object. Current XDS, XDS.a and XDS.b, return this
format from a Stored Query since that transaction is coded in ebRIM 3.0. Future versions of an object,
that is version 2..n of an object, will have new values for the id attribute but the original value for the
lid attribute. The value of the lid attribute is always equal to the value of the id attribute of the first
version of the registry object. To query, in SQL, for all versions of this ExtrinsicObject one would use
an SQL clause of

225

230

235

 lid='urn:uuid:123...'

and each ExtrinsicObject returned would have the same value for the lid attribute but a different value
for its id attribute.

Note that while the lid attribute labels the various versions of a registry object and the id attribute
allows each version to be addressable by being unique, these two attributes are inadequate for
determining which is the first version, the second version, etc. For this the standard introduces the
VersionInfo element which looks like:

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 9
 Copyright © 2008 IHE International

<VersionInfo versionName=”2” comment=””/>

This element is required in all registry objects. In XDS, this means it is required in ExtrinsicObject,
RegistryPackage (submission set and folder), and Association. It is also required on Classification and
ExternalIdentifier objects.

240

245

250

255

260

The ebRIM 3.0 specification introduces rules on the behavior of versions of registry objects. All
versions of an ExtrinsicObject reference the same document in the repository. For XDS.b this implies
that all versions of a DocumentEntry/ExtrinsicObject must carry the same value for the
XDSDocumentEntry.uniqueId attribute since it is used to reference the actual document in the
repository.

An Association always references a specific version of a registry object. Its attributes sourceObject and
targetObject hold the id attribute of the object being pointed at.

The lid attribute is not required in the submission of a registry object. The value of the lid attribute
defaults to the value of the id attribute thus creating the first version of a registry object by default.

The VersionInfo attribute is never submitted to the registry, it is generated by the registry and always
returned from a query. The versionName portion of the VersionInfo attribute is automatically allocated
and set by the registry. It defaults, in the standard, to versionName=”1.1” but the registry
implementation is not constrained in what numbering scheme it uses. The comment portion of the
VersionInfo attribute is set by the comment attribute of the <rim:Request/> element. In XDS.b this
corresponds to the <rim:SubmitObjectsRequest/> element that is coded in the Provide And Register
Document Set and Register Document Set transactions. Note that this comment applies to all objects
submitted in the request.

The ebRS 3.0 standard introduces a new request/verb, UpdateObjectsRequest, for submitting updates to
a registry object. Note that updates can be carried in either UpdateObjectsRequest or
SubmitObjectsRequest requests according to ebRS 3.0.

When a registry object (such as an ExtrinsicObject) is updated, the submitter must query the registry
for the previous version, update the parts of the object as needed and resubmit the entire registry object.
Individual attributes cannot be updated.

The ebRIM 3.0 standard allows for the creation of new status attribute values. 265

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 10
 Copyright © 2008 IHE International

6 Proposal for Use in XDS.b
The existing transactions in XDS.b are adequate to support the new functionality presented in this
paper. But, the new functionality can be categorized as being 'administrative' in nature. Each use case
presented:

1. Is beyond the basic submit/query/retrieve semantics provided in the rest of the XDS.b profile. 270

275

280

285

295

2. Is likely to be governed by a different and more restrictive authorization rules

XDS actors that would potentially generate and submit the updates are:
• Document Source to update patient demographics and confidentiality code; and to deprecate

and delete
• Document Repository to update the availability status of documents

In both cases an integrated Document Consumer would be needed to provide access to the Stored
Query transaction.

For these reasons, a new actor is introduced with the name XDS Admin Client. A new named option to
the Document Registry actor will be used to describe the added functionality in the Document Registry
actor.

The XDS Admin Client actor uses the Stored Query [ITI-18] and a new Update Document Set [ITI-
XX] transactions to query and issue metadata updates to the Document Registry actor. The XDS
Admin Client actor is the only actor authorized to perform metadata updates. The new Update
Document Set transaction uses the ebRS 3.0 SubmitObjectsRequest.

The need for access to the Stored Query transaction is motivated by the nature of the update metadata 290
mechanism:

1. Read existing metadata object (XDSDocumentEntry) through Stored Query

2. Update object XML

3. Submit updated object as new version.

The Update Document Availability use case requires a binding between the Document Repository and
XDS Admin Client actors. The Document Repository has the knowledge of what and how to update
while the XDS Admin Client actor has the ability to perform the update.

In all cases, the Document Registry actor is the recipient of the Stored Query and Update Document Set
transactions issued by the XDS Admin Client actor.

The following issues motivate the creation of the new actors: 300

 XDS Admin Client

 Document Registry

Update Document
Set

Stored Query

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 11
 Copyright © 2008 IHE International

1. Makes the description of functionality and mechanism easy since it is bound to a specialized
admin actor.

2. Allows documentation of new functionality as an option on the XDS.b profile for which
vendors can formally declare their support.

3. New and different risk analysis is necessary. This is to be kept separate from concerns
regarding the 'plain' XDS actors. It is forecast for instance that a separate or enhanced
authentication may be required to perform these administrative function because of specific
risk.

305

315

320

325

335

6.1 A new perspective on metadata
In the past a single DocumentEntry object in the Document Registry represented a single Document in 310
the Document Repository. With the Document Registry maintaining multiple versions of metadata,
some basic premises about metadata change.

1. It has always been the case that a document can be registered multiple times and as long as
the size and hash attributes are identical, it can be registered multiple times with the same
XDSDocumentEntry.uniqueId

2. Now with Metadata Versioning, an additional DocumentEntry exists in the Registry for each
version of the metadata. All versions of the DocumentEntry carry the same
XDSDocumentEntry.uniqueId.

6.2 Mechanisms for Updating Metadata
Three different mechanisms are introduced:

Metadata Versioning where a new version of a registry object is submitted.

Status Updating where the submission of a Association object triggers a side-effect in the registry.
The Association attribute targetObject identifies the object to be updated and the name of the
Association indicates the nature of the side-effect. The most common side-effect is to change the status
attribute of the targetObject.

Document Status Slot is new and is used to record the status of the document in the repository. This
slot can take on two values, Online and Offline. If the slot is not present then the default value is
Online. The Online value indicates that the document in the Repository is available for retrieve.

6.3 Rules for use of Updating Metadata

The key issue in introducing metadata updating features into XDS.b is to make them work well with 330
other design aspects of XDS.b. The following rules shall govern the operation of Metadata Versioning:

1. SubmissionSet objects are not versioned. The lid attribute shall always be equal to the id
attribute or not present which implies that lid is equals to id. This does not change the rules
for lid management as documented in ebRIM 3.0. It does acknowledge that lid is optional on
submit.

2. Folder objects are not versioned.

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 12
 Copyright © 2008 IHE International

3. The first version of a DocumentEntry, in a Register Document Set transaction, can be
identified by the lack of a lid attribute or by having a lid attribute equal to its id attribute.

4. DocumentEntry objects (ExtrinsicObjects) are versioned. Submitting a new version of a
DocumentEntry requires a SubmissionSet and an Association just like the original
submission.

340

345

350

355

360

365

370

375

5. The Document Registry actor, upon receipt of new version of a DocumentEntry, shall label
the previous version with status of Deprecated if that previous version has status of Approved.
If the previous DocumentEntry has a status other then Approved then the status shall not be
altered. The result is that at most one version of a DocumentEntry shall have status of
Approved.

6. An update, a submission of a newer version of a DocumentEntry object, shall have a lid
attribute in UUID format that matches the id attribute of a DocumentEntry already in the
Registry. The id attribute of the new DocumentEntry may be in UUID or symbolic format. If
it is in UUID format, it must not exist in the registry and it must not be equal to the lid
attribute. If the id attribute has a symbolic format, the Document Registry actor shall assign a
new UUID.

7. The Document Registry actor shall allocate values for the versionName (version number)
attribute based on the order of arrival. The first version of an ExtrinsicObject shall have
version 0. Subsequent versions shall increment this value treating it as an integer.

8. If a DocumentEntry contains a versionInfo attribute in the Register Document Set or Update
Document Set transaction, the Registry actor shall ignore and overwrite its contents.

9. Updates shall be submitted using the SubmitObjectsRequest ebRS 3.0 request but labeled in
the ws:Action as an update. See the 'Web Services Definitions' section for details. Update
requests may only contain DocumentEntry updates and the necessary SubmissionSet and
Association objects.

10. The following rules govern what shall not be altered between versions of a DocumentEntry.
The Document Registry actor shall validate that these attributes are consistent across versions
and reject submissions that violate this rule. The following attributes shall not be altered
between versions of a DocumentEntry.

a) Unique ID

b) Size

c) Hash

d) Logical ID (lid)

11. When a document is submitted as a replacement, using a RPLC Association to an existing
document, the new DocumentEntry shall be a first version.

12. When queried via the Query transaction (SQL), metadata is returned in ebRIM 2.1 format.
This format does not provide the lid or VersionInfo attributes.

13. The ebRIM 3.0 standard requires that if a registry receives a Registry Object in a submission
containing a status attribute that the attribute be ignored. The status attribute is only set by the
registry. For XDS, to request a DocumentEntry be deprecated, the Document Source shall

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 13
 Copyright © 2008 IHE International

submit a Submission Set and an Association in an Update Document Set transaction [ITI-
XX]. The Association shall have an association type of Deprecate (new value) and its
targetObject shall reference a DocumentEntry already in the registry. Upon receipt, the
Document Registry actor shall change the status on the targeted DocumentEntry to
Deprecated.

380

385

390

395

400

405

14. This introduces the new status updating mechanism.

n

Submission

Deprecate

Submission

Registry Contents
after Submission

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

i f

Registry contents
before submission

targetObject = urn:uuid:abc...

Submission

HasMember

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

VersionInfo = 1

status=Deprecated

Submission

HasMember

Submission

Deprecate

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 14
 Copyright © 2008 IHE International

15. To label a document as offline, the document still exists but is not accessible, submit a
Submission Set and Association. The Association shall have an association type of Offline
(new value) and its targetObject shall reference a DocumentEntry already in the registry
which represents this document. If multiple versions of metadata (DocumentEntry) for this
document exist, the latest version must be the target of the Association. Upon receipt, the
Document Registry shall store the status of the document (Offline). It is the Document
Registry implementer's choice whether all versions of the DocumentEntry objects are updated
or whether a single status is maintained governing all versions the Document (independent of
how many DocumentEntry objects exist for the document in the registry). Either way, in
response to a Stored Query for any version of this DocumentEntry object, the document status
is reported as the value of the (new) documentStatus Slot on the DocumentEntry object. This
documentStatus attribute is new and different from the existing DocumentEntry status
attribute. The new documentStatus attribute describes the physical availability of the
document in the repository. The existing status attribute documents the administrative status
from the point of view of the registry. The difference between status=Approved and
status=Deprecated in the registry describes the current relevance of the document and not its
physical availability. If this documentStatus slot is not present in a Stored Query response its
default value is Online. Note that the documentStatus is recorded and reported (Stored Query)
independent of the version of the DocumentEntry metadata object. The documentStatus
represents the status of the document in the repository and multiple versions of the
DocumentEntry (metadata) may reference a single repository document.

410

415

420

425

430

435

440

445

Submission

Offline
Submission

Registry Contents
after Submission

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

i f

Registry contents
before submission

targetObject = urn:uuid:abc...

Submission

HasMember

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 15
 Copyright © 2008 IHE International

 450

455

460

465

16. If the documentStatus slot is received in a metadata submission, it will be ignored (not saved).
The value may only be manipulated through the submission of Online and Offline
Associations to the Registry.

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

uniqueId=1.2.3.xxx

Submission

HasMember

Submission
Offline

Additional state maintained
in Document Registry:

Document with
uniqueId=1.2.3.xxx is
Offli

Later Stored Query result:
<ExtrinsicObject id=”urn:uuid:abc...” lid=”urn:uuid:abc...”>

 <Slot name=”documentStatus”>

 <ValueList>

 <Value>Offline</Value>

 </ValueList>

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 16
 Copyright © 2008 IHE International

1. To label a document as online, documenting its accessibility for retrieval, submit a
Submission Set and Association. The Association shall have an association type of Online
(new value) and its targetObject shall reference the most recent version of the DocumentEntry
already in the registry. The documentStatus attribute held by the Registry for this document is
changed to Online. Retrieval of DocumentEntry objects representing this document shall
return either documentStatus = Online or no documentStatus slot in the metadata.

470

475

480

485

490

Submission

Online

Submission

Registry contents
before submission

targetObject = urn:uuid:abc...

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

i f

Submission HasMember

Submission
Offline

Additional state maintained in
Document Registry:

Document with
uniqueId=1.2.3.xxx is Offline

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 17
 Copyright © 2008 IHE International

 495

500

505

To label a Document as deleted, submit a Submission Set and Association. The Association shall have
an association type of Delete (new value) and its targetObject shall reference a DocumentEntry already
in the registry. Upon receipt, the Document Registry shall change the value of the status attribute of the
DocumentEntry to Deleted.

1. DocumentEntry objects with status of Deleted shall not be returned from a Stored Query.

Acceptable operations based on current document status
Document

Status
documentStatu

s slot
Mark

Offline
Mark

Online
Delete Update

metadata
attributes

Replace,Appe
nd,Translate

Submitted

Deprecated Online Yes2 Yes2 Yes2 No No1

Deprecated Offline Yes2 Yes2 Yes2 No No1

Approved Online Yes Yes Yes Yes Yes

Approved Offline Yes Yes Yes Yes Yes

Deleted3 any No No No No No

1- No - Prohibited by ebRIM 510
2- According to ebRS 3.0 new Associations cannot be accepted by the Registry for Deprecated objects. Therefore, for these

operations, it can be assumed that the Registry Adaptor momentarily labels the necessary objects as non-Deprecated to
allow these updates.

3- No operations are allowed on Deleted DocumentEntries.

Registry Contents
after Submission

DocumentEntry

id=urn:uuid:abc...

lid=urn:uuid:abc...

i f

Submission

HasMember

Submission

Offline

Online

Additional state maintained in
Document Registry:

Document with
uniqueId=1.2.3.xxx is Offline

Submission

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 18
 Copyright © 2008 IHE International

7 Web Services Definitions 515

The new Update Document Set transaction [ITI-XX] uses the ws:Action
urn:ihe:iti:2008:UpdateDocumentSet for the request and urn:ihe:iti:2008:UpdateDocumentSetResponse
for the response. Both request and response are packaged as SIMPLE SOAP messages. They never
carry attachments (documents).

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 19
 Copyright © 2008 IHE International

8 Examples 520

Examples can be found in the online ITI Implementation Guide at
http://wiki.ihe.net/index.php?title=Metadata_Versioning_Implementation. The top level page for the
Implementation Guide can be found at http://wiki.ihe.net/index.php?title=ITI_Implementation_Guide.

http://wiki.ihe.net/index.php?title=Metadata_Versioning_Implementation

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 20
 Copyright © 2008 IHE International

9 Required changes to existing XDS facilities
This section documents the required changes to existing XDS facilities. It does not include the 525
implementation of the XDS Admin Client actor or the update to the Document Registry actor since
they represent separate implementation decisions/options. This section is intended as a warning to
implementers of effects this specification may have on their existing software even if they do not
implement this new facility.

9.1 Changes to the Life-Cycle Management facility 530

535

540

550

None for the Document Consumer actor. Replacement operates the same, deprecating the old version
of the document. For the Document Source and Document Registry actors, only the most recent version
of a DocumentEntry can be the target of a Replace/ Transform/ Append operation. This is natural
since it will be the only version with status = Approved.

9.2 Added Requirements for Folder Management
When a new version of a DocumentEntry is registered, the Document Registry actor shall add the new
version to all folders in which the previous version was a member. This is the same behavior that is
specified when a DocumentEntry, as a member of a folder, is replaced. Since the previous version is
labeled Deprecated, there will still only be a single Approved version of the document in the folder.

9.3 New Stored Query parameter

A new parameter, $XDSDocumentEntryLid, is added to the GetDocuments Stored Query. This
parameter is mutually exclusive with the $XDSDocumentEntryEntryUUID and
$XDSDocumentEntryUniqueId parameters (only one one of the three may be specified). When
$XDSDocumentEntryLid is specified all matching DocumentEntry objects are returned. Multiple
values may be specified for this parameter. 545

9.4 Changes to Document Source actor implementations

There are no required changes to the Provide and Register transaction. The lid attribute is optional on
this transaction.

9.5 Changes to Document Consumer actor implementations

Given that a typical Document Consumer is not interested in documents with status other than
Approved, most Document Consumer operations will not be affected.

New Association types will have to be ignored.

For implementations that wish to distinguish metadata versions, sensitivity to the new status codes as
well as the lid, and versionInfo metadata is required.

All Document Consumer actor implementations will want to be sensitive to the presence of offline 555
documents. To do so the Document Consumer must understand new attribute documentStatus.

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 21
 Copyright © 2008 IHE International

9.6 Changes to Document Repository actor implementations
None

9.7 Changes to Document Registry actor implementations

Document Registry actor implementations which support this function will need to: 560
• Accept UpdateObjectsRequest
• Manage lid and versionInfo attributes
• Implement new status codes for ExtrinsicObjects
• Implement the new byUid parameter to the GetDocuments Stored Query
• Accept new Association types 565
• Change status on DocumentEntry objects triggered by submission of new Association types.
• Maintain Online/Offline status of documents independent of how many DocumentEntry

versions are present
• Manage document membership in Folders

9.8 Namespace Issues 570

The new Association types introduced shall have a namespace prefix of:
urn:ihe:iti:2008:AssociationType:

The new status codes introduced shall have the namespace prefix of:
urn:ihe:iti:2008:ResponseStatusType:

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 22
 Copyright © 2008 IHE International

10 Use Cases Revisited 575

580

585

590

595

600

These use cases describe basic operations and do not yet address security or audit issues.

10.1 Update Patient Demographics
Patient Demographics and most other attributes of the DocumentEntry object can be updated using the
Metadata Versioning functionality.

10.2 Update Confidentiality Code
Confidentiality Codes are coded as Classification objects. An update would allow zero or more new
Confidentiality Codes to be added to the ExtrinsicObject and zero or more existing Confidentiality
Codes to be removed. Multiple ExtrinsicObjects could be updated in a single request.

10.3 Deprecate Document without Replace
A metadata update is submitted containing a Submission Set and Association of type Deprecate. The
existing Approved document is targeted by the Association's targetObject attribute. The registry labels
the targeted DocumentEntry with status = Deprecated.

10.4 Off-line Archival of Document Repository Contents
A metadata update is submitted containing a Submission Set and Association of type Offline. The
existing document is targeted by the Association's targetObject attribute. The registry updates the
DocumentEntry with (new) documentStatus = Offline. In a query response, the
documentStatus=Offline indicates that the Repository data exists but is not available for retrieval. No
information is given on how to get the document back from off-line archive. A query for status =
Approved will see off-line documents. There is currently no way to filter out Offline documents in a
Stored Query.

A DocumentEntry is relabeled as Online by submitting a Submission Set and Association of type
Online with the targetObject pointing to the DocumentEntry of interest.

10.5 Delete Document

A metadata update is submitted containing a Submission Set and Association of type Delete. The
existing DocumentEntry is targeted by the Association's targetObject attribute. The registry labels the
targeted ExtrinsicObject with status = Deleted. Stored Queries never return DocumentEntry objects
with status of Deleted. There is no mechanism for UnDelete in this specification.

IHE_ITI_TF_White_Paper_Metadata_Versioning_2008-10-10 23
 Copyright © 2008 IHE International

10.6 Change Summary

New Association Types
Associatio

n
Type

New status attribute
of targetObject

New documentStatus
attribute of

targetObject

Action

Deprecate Deprecated No Change Update status attribute

Offline No Change Offline Update documentStatus in Registry. Return
documentStatus attribute with value Offline in
Stored Query when asked about any version of the
document's DocumentEntry objects

Online No Change Online Remove the Offline status held in the registry for
this document.

Delete Deleted No Change Refuse to return DocumentEntry in Stored Query
response

 605

New Status Codes
Status Code Meaning

Deleted DocumentEntry is not longer detectable by a Stored Query

New Slot on DocumentEntry
Slot Name Meaning

documentStatus Status of the document in the repository. This slot has a single value which can be Offline or
Online. If the slot is not present then its value is Online by default.

	1 Open Issues
	2 Closed Issues
	3 Introduction
	4 Use Cases
	4.1 Update Patient Demographics
	4.2 Update Confidentiality Code
	4.3 Deprecate Document without Replace
	4.4 Update Document Availability
	4.5 Delete Document

	5 OASIS ebXML Registry 3.0 support for Metadata Versioning
	6 Proposal for Use in XDS.b
	6.1 A new perspective on metadata
	6.2 Mechanisms for Updating Metadata
	6.3 Rules for use of Updating Metadata

	7 Web Services Definitions
	8 Examples
	9 Required changes to existing XDS facilities
	9.1 Changes to the Life-Cycle Management facility
	9.2 Added Requirements for Folder Management
	9.3 New Stored Query parameter
	9.4 Changes to Document Source actor implementations
	9.5 Changes to Document Consumer actor implementations
	9.6 Changes to Document Repository actor implementations
	9.7 Changes to Document Registry actor implementations
	9.8 Namespace Issues

	10 Use Cases Revisited
	10.1 Update Patient Demographics
	10.2 Update Confidentiality Code
	10.3 Deprecate Document without Replace
	10.4 Off-line Archival of Document Repository Contents
	10.5 Delete Document
	10.6 Change Summary

